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Abstract

The incorporation of a chaotic component in a computing system is

incompatible with its being effectively programmable. The example

presented shows that the concepts of programming suitable for biological

systems may differ from those which have grown out of our experience with

present day digital computers.
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We show by construction that systems are possible which are computation

universal, but not effectively programmable.

Definition. A computer will be called effectively programmable if it is

possible to communicate a de irv-A program to it using a digital computer

(e.g. a time-bounded, space-bounded Turing machine).

The machine to which the program is to be communicated is assumed

to be computation universal and represented by a universal Turing machine

(UTM) consisting of a finite automaton (UFA), a movable tape on which

symbols can be written, and a read-write head. The program is represented

as an input to the tape and is to be coded by the set of Turing quadruples

fqixjYkq f. As usual the qr belong to the finite state set of UFA, the

x belong to the finite set of inputs (or tape alphabet), and the Yk runs

over the set of outputs (alphabet plus tape moves). The data on which the

program is to act is represented on the tape, as a sequence x r...x.
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Whether or not we place time or space bounds on the machine to be programmed

is Immaterial to the argument.

The special feature of our system is the presence of a translating

device which codes external inputs into tape symbols. The only way for the

programmer to write the program and data into the tape squares is through

the translator, whose outputs at the end of a certain interval of time

determine the symbol to be written on the tape. We take the translator
4

as described by the Lorenz equation (Lorenz.

S- 10y - lox

=28x - y - xx1

! - xy - 8/3z.

Fact. A system described by the Lorenz equation in a certain range of
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parameters exhibits chaos, that is, shows aperiodic behavior of a kind

sensitively dependent on the initial conditions (see Lorenz, 1963;

Guckenheimer, 1980). Many other systems are now known to exhibit chaos,

such as certain continuous chemical systems with at least three variables

(R68ssler, 1979). Though not necessary for the argument we choose the

Lorenz equation since it is well known and considered to be an example

which has a strange attractor, that is, an attractor with no embedded

periodic trajectories that are attracting, so that the solutions stay un-

periodic over arbitrarily long times. Abstract reaction systems for which

the existence of a strange attractor can be proven (see R~ssler, 1979)

could have been chosen instead of the Lorenz equation.

Definition. Let Vr -IQJtt, where is the size of the state set of the

digital computer (e.g. UFA plus tape) and At the length of time required

for each change of state.

Lemma. Any digital computer (e.g. space-bounded Turing machine) which com-

putes the symbols placed on the tape by solving the equation for the chaotic

translator will have periodic behavior with period VVf.

Proof. A space-bounded Turing machine has a finite number of states, there-

fore after a sufficient (perhaps very long) amount of time it must return

to a previous state, or must reach an absorbing state. The period of the

cycle cannot be greater than 'f since the cycle cannot contain more than
f

SQ! states.

Theorem. A computer may be computation universal but not effectively

programable.

Proof. If the time interval T' (see above), which we are free to choose,

exceeds the interval 'r, it will not be possible for the digital computer

to compute the output of the chaotic translator. Even an approximate
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computation is impossible under any reasonable definition of approximate,

since the digital computer will have returned to one'of its previous

states, while the translator will not have.

Note that the theorem holds even if the simulating computer is not

time-bounded. If it is time-bounded accuracy will have to be traded for

time and the approximation will break down for smaller values of 1'.
C

If the inputs to the initial-condition-sensitive translator are known

only up to a certain small number of digits depending on , the theorem

will hold even for 'c '-4'I, but in this case due to ignorance. But

even in the absence of ignorance, the above construction implies that it

is possible to use a deterministic process to communicate programs to a

computer, yet not ever be able to know what programs are communicated to

it.

If the system to be programmed has a compiler rather than an inter-

preter, we could say that communicating the program involves setting the

state of the finite automaton, UFA. If the compiler rather than the in-

terpreter included the chaotic component, the program typed in as the

input would set the state determinately, but it would be Impossible to

prescribe which state is set and therefore to know what program is typed

in. As in the case of the chaotic translator, UTM would be deterministi-

cally programmable, but it would be impossible to specify in advance or

compute What program is communicated to it as a result of selecting the

inputs.

The assumption that either the translator or the process in the con-

piler'obeys the Lorenz equation is an idealization. If one believes the

natural system is in reality a finite state system, it will compute the

Lorenz equation or any equation with chaotic solutions with only a certain
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degree of accuracy. Under this assumption the theorem would hold only to

the extent that the digital computer computes chaos less accurately than

the natural system it simulates, leading to a breakdown of its approxima-

tion at an earlier time. If the natural system does not obey the Lorenz

equation precisely due to noise, the situation will be worse for program-

mability. Probabilities will enter and it will not even be possible to

compute the probability distributions that are generated.

There are good phenomenological reasons (such as the phenomenon of

turbulence) for believing that chemical and other natural systems can

exhibit deterministic chaos at least to a very good approximation. An

interesting point is that instead of assuming that the chaotic natural

system computes Eq. (1), we could take this system as standing in place

of Eq. (1). For our result to hold it is only necessary for the stand-in

system to exhibit chaos. In fact we could never hope to demonstrate an

explicit equation for such a stand-in system since no digital computer

could ever provide a justifying computation.

The purpose of our construction is to show, by an almost trivial

example, that the concept of programmability is subtle. Since Ic can

have an infinite number of values which are larger than , it would

never be possible to write a finite manual for a machine which incorporates

a chaotic process. The digital computers from which our intuitions about

programming are built are in this respect unusual and remarkable systems.

* Systems exist in which the nature of the relationship between input and

rule executed is very different from that to which we have become accus-

towed on the basis. of our experience with these unusual systems. It is

not unreasonable to suppose that many, if not most, systems which occur

naturally are not effectively programmable. In general, biological systems
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appear to fulfill conditions which make them not effectively programmable.

This is not only because of the ubiquity of chaos, but also because the

folding of proteins makes each new gene an emergent primitive whose

function cannot be ascertained from its structure without consulting the

laws of physics (Conrad, 1974, 1979). One caveat is that caution is

necessary in carrying programming intuitions gained from digital computers

over to biological systems;

A second caveat derives from the fact that the construction provides

a concrete example in which the issue of continuity versus discreteness

bears significantly on the computing power of natural systems. According

to Smale's symbolic dynamics interpretation (Smale, 1967), it should be

possible to view chaotic systems as calculators which compute the digits

of a different irrational number for each different initial condition

(aside from a subset of periodic numbers of measure zero). The loss of

effective programmability in this example can be interpreted as simply

due to the fact that no finite system can compute nonperiodic numbers

over an arbitrary number of digits. The only plausible candidate for

physical reality which can do this is a chaotic system with continuous

state variables. The example thus shows that the reality or nonreality

of continuity in nature determines whether it is possible to use digital

computers to simulate significant information processing tasks which

might be executed by biological systems, even taking simulation in its

weakest acceptable sense (cf. Conrad and Rosenthal, 1980).

It is interesting that the chaotic translator protects the privacy

of the ruie executed by the computer from all outside observers, includ-

f tIng the programmer himself. It therefore protects the programmed system

from being simulated or predicted by any other computer, no matter how

fast.
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